University of Idaho - I Banner
students walk on University of Idaho campus

Visit U of I

Learn about the many reasons the University of Idaho could be a perfect fit for you. Schedule Your Visit

Parents on campus during orientation

Homecoming Oct. 14 - 21

Join other Vandal families for a week of celebration and Vandal traditions. View Calendar

campus full of students

U of I Retirees Association

UIRA has a membership of nearly 500 from every part of the University. Learn More

Students participate in the TRX wellness class at the Student Recreation Center

Campus Recreation

Gym memberships and wellness class passes are available for faculty, staff and their spouses. Get Healthy

Locations

U of I College of Engineering

Mailing Address:

Janssen Engineering (JEB) Room 125
111 Perimeter Drive MS 1011
Moscow, ID 11111-1011

Phone: 111-111-6470

Fax: 111-111-6645

Email: [email protected]

Web: College of Engineering

U of I Boise Engineering

Mailing Address:

Idaho Water Center 
322 E. Front Street 
Boise, ID 83702

Phone: 111-364-6123

Fax: 111-364-3160

Email: [email protected]

Web: Boise Engineering

U of I Idaho Falls Engineering

Physical Address:

1776 Science Center Drive, Suite 306
Idaho Falls, Idaho 83402

Phone: 111-757-5400

Fax: 111-282-7929

Email: [email protected]

Web: Idaho Falls Engineering

U of I CDA Computer Science

Physical Address:
1031 N. Academic Way, Suite 242
Coeur d'Alene, ID 83814

Phone: 111-292-2509

Email: [email protected]

Web: U of I Coeur d'Alene

Engineering Outreach

Physical Address:

Engineering Physics (EP) Building, Room 312
111 Perimeter Drive MS 1014
Moscow, ID 11111-1014

Phone: 111-111-6373

Fax: 111-111-9249

Email: [email protected]

Web:

Donald McEligot, Ph.D.

Donald McEligot, Ph.D.

Visiting Professor

Phone

111-533-8120

Mailing Address

University of Idaho — CAES MS 3560
995 University Boulevard
Idaho Falls, ID 83401

  • Ph.D., Thermoscience, Stanford University
  • M.S.E., Nuclear Engineering, University of Washington
  • B.E.M.E., Mechanical Engineering, Yale University

  • Fluid dynamics
    • Complex turbulent and transitional shear flow
    • Entropy generation
  • Convective heat transfer
  • Experimental, analytical and computational approaches (thermal hydraulics)

Donals McEligot — a thermal scientist at the Center for Advanced Energy Studies in Idaho Falls — is a visiting professor in the Nuclear Engineering Division at the University of Idaho, a professor emeritus of University of Arizona and a Nuclear Science (Directorate) Fellow at the Idaho National Laboratory. He has over three decades experience in development, use and guidance of experimental thermal science and computational thermal fluid physics. He is known for his pioneering experiments and numerical analyses on transport property variation in internal turbulent, laminar and laminarizing gas flows and discovery of laminarization by heating. He was the first to identify and predict properly low-Reynolds-number turbulent flow in tubes, to measure transition of mixtures of polymer solutions and to measure effects of heat transfer to low Prandtl number gas mixtures. He has been honored by receipt of the 2007 ASME Heat Transfer Memorial Award, their Heat Transfer Division 75th Anniversary Medal and the 2011 iNEER Leadership Award, an award as a Senior Fulbright Research Scholar to West Germany, selection to ASME Fellow, receipt of the Charles H. Jennings Memorial Award from the American Welding Society, naming as the 2002 Distinguished Scientist by the Idaho Academy of Science and 1996 JAERI Distinguished Foreign Scientist and promotion to Captain, USNR. The author of more than sixty archival publications, he has completed research projects at Imperial College of Science and Technology/London, Universität Karlsruhe, the Max Planck Institut für Strömungsforschung/Göttingen, Universität Stuttgart, Universität der Bundewehr München and U. Limerick. His recent studies include laminar-to-turbulent transition in duct entry regions, dissipation and entropy generation in turbulent, transitional and laminar flows, thermal fluid dynamics of prismatic gas-cooled reactors and heat transfer to supercritical-pressure fluids.

  • Laminar-to-turbulent transition in duct entry regions
  • Dissipation and entropy generation in turbulent, transitional and laminar flows
  • Thermal fluid dynamics of prismatic gas-cooled reactors
  • Heat transfer to supercritical-pressure fluids

  • Air Force Office of Scientific Research
  • Army Research Office - Durham
  • Bechtel Corporate Funded R&D program
  • Bundesministierium für Forschung und Technologie
  • Department of Energy
    • Basic Energy Sciences EPSCoR program
    • Environmental Management Science program
    • Gas-cooled Fast Reactor program
    • International Nuclear Energy Research Initiative - Korea and France
    • Nuclear Energy Research Initiative
    • Savannah River Reactor Re-start program
    • Supercritical Water Reactor program
    • Very High Temperature Reactor program
    • Nuclear Energy University Program
  • INEEL
    • Faculty/staff Exchange program
    • Long Term Research Initiative
    • Laboratory-Directed Research and Development program
  • Max Planck Gesellschaft
  • National Science Foundation
  • Nuclear Regulatory Commission
  • Office of Naval Research
    • Applied Hydrodynamics program
    • Heat Transfer program
    • Materials Science program
  • U. S. Naval Underwater Systems Center
  • U. S.-Deutschland Fulbright Commission
  • University of Arizona
  • Westinghouse Independent Research and Development Program

  • ASME Heat Transfer Memorial Award, 2007
  • iNEER Leadership Award from International Network of Engineering Education and Research (iNEER), 2011
  • 75th Anniversary Medal of the ASME Heat Transfer Division, 2013
  • Charles H. Jennings Memorial Award, American Welding Society, 1992 
  • Distinguished Foreign Scientist, Japan Atomic Energy Research Institute, 1996  
  • Senior Fulbright Research Scholar to West Germany, 1982-3
  • Distinguished Visiting Professor, Institut für Kernenergetik und Energiesysteme (IKE), Universität Stuttgart; 2005-8
  • 2002 Distinguished Scientist by the Idaho Academy of Science
  • Lockheed Martin Corporation NOVA Award, 1998

  • Fellow, American Society of Mechanical Engineers (ASME)
  • Member, American Nuclear Society (ANS)
  • Member, American Physical Society (APS)
  • Member, American Society for Engineering Education (ASEE)
  • Member, International Network for Engineering Education and Research (iNEER)
  • Associate Technical Editor, ASME Journal of Heat Transfer, 1986-1992
  • U. S. Scientific Committee, 12th International Heat Transfer Conference, 2002
  • ASME Heat Transfer Division
    • Gas Turbine Committee (K-14), 1974-present
    • General Papers Committee, 1980-82; Chairman - 1981-1982
  • ASME Gas Turbine Division, Heat Transfer Committee, 1974-present
  • International Advisory Committee, 3rd International Meeting of Specialists on Heat Transfer and Fluid Dynamics at Supercritical Pressure (HFSCP2016), University of Sheffield, 2016
  • IAEA (International Atomic Energy Agency) Advisory Committee for Coordinated Research Programme (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for Supercritical Water-cooled Reactors, 2006-8
  • ANS Aerospace Nuclear Science and Technology Technical Group, Executive Committee, 2000-2005

  • Swank, W. D., F. I. Valentin, M. Kawaji and D. M. McEligot, 2017.  Thermal conductivity of G-348 isostatic graphite.  Nuclear Technology, in press.
  • McEligot, D. M., and R. W. Johnson, 2017.  Bypass flow resistance in prismatic gas-cooled nuclear reactors.   J. Nuc. Eng. and Radiation Sci., 3, No. 1, pp. 011003-1 to 9.  Available via .
  • Valentin, F. I., N. Artoun, R. Anderson, M. Kawaji and D. M. McEligot, 2016.  Study of convection heat transfer in a very high temperature reactor flow channel:  Numerical and experimental results.  Nuclear Technology, 196, pp. 661-673.  Available as  or .
  • Ricco, P., E. J. Walsh, F. Brighenti and D. M. McEligot, 2016.  Growth of boundary-layer streaks due to free-stream turbulence.  Int. J. Heat Fluid Flow, 61, pp. 272-283.  Available as  .
  • Chu, X., E. Laurien and D. M. McEligot, 2016.  Direct numerical simulation of strongly heated air flow in a vertical pipe.  Int. J. Heat Mass Transfer, 101, pp. 1163-1176..
  • Ghasemi, E., D. M. McEligot, K. P. Nolan, J. Crepeau, A. Siahpush, R. S. Budwig and A. T. Tokuhiro, 2014.  Effects of adverse and favorable pressure gradients on entropy generation in a transitional boundary layer region under the influence of freestream turbulence.  Int. J. Heat Mass Transfer, 77, pp. 475-488.
  • George, J., L. D. Owen, T. Xing, D. M. McEligot, J. C. Crepeau, R. S. Budwig and K. P. Nolan, 2014.  Entropy generation in bypass transitional flows.  J. Hydrodynamics, 26, pp. 669-680.
  • McEligot, D. M., and E. J. Walsh, 2014.  Entropy generation in steady laminar boundary layers with pressure gradients.  Entropy, 16, pp. 3808-3813.
  • Ghasemi, E., D. M. McEligot,, K. P. Nolan, J. C. Crepeau, A. Tokuhiro and R. S. Budwig, 2013.  Entropy generation in a transitional boundary layer region under the influence of freestream turbulence using transitional RANS models and DNS.  Int. Comm. Heat Mass Transfer.  41, pp. 10-16.
  • Rehill, B., E. J. Walsh, P. Schlatter, L. Brandt, T. Zaki and D. M. McEligot,  2013.  Identifying turbulent spots in transitional boundary layers.  J. Turbomachinery, 146, pp. 011019-1 to -8.
  • Becker, S., D. M. McEligot, E. J. Walsh and E. Laurien, 2012.  Entropy generation in a flow transitioning downstream of a rib.  Turbulence, Heat and Mass Transfer 7 (Ed.: K. Hanjalic, Y. Nagano, D. Borello and S. Jakirlic), New York:  Begell House.
  • Walsh, E. J., D. M. McEligot, L. Brandt and P. Schlatter, 2011.  Entropy generation in boundary layers transitioning under the influence of freestream turbulence.  J. Fluids Engr., 133, pp. 061203-1 to -10. 
  • Nolan, K. P., E. J. Walsh and D. M. McEligot, 2010. Quadrant analysis of a transitional boundary layer subject to freestream turbulence.  J. Fluid Mech., 658, pp. 310-335.
  • McIlroy, H. M, D. M. McEligot and R. J. Pink, 2010.  Measurement of turbulent flow phenomena for the lower plenum of a prismatic gas-cooled reactor.  Nuc. Engr. Design, 240. pp. 416-428. 
  • Rehill, B., E. J. Walsh, K. Nolan, D. M. McEligot, L. Brandt, P. Schlatter and D. S. Henningson, 2010.  Entropy generation rate in turbulent spots in a boundary layer subject to freestream turbulence.  Seventh IUTAM Symposium on Laminar-Turbulent Transition (Ed.:  P. Schlatter and D. S. Henningson), Dordrecht:  Springer, pp. 557-560. 
  • McEligot, D. M., R. S. Brodkey and H. Eckelmann, 2009.  Laterally converging duct flows:  Part 4. Temporal behavior in the viscous layer.  J. Fluid Mech., 634, pp. 433-461.
  • Bae, J. H., J. Y. Yoo, H. Choi and D. M. McEligot, 2008.  Structure of turbulent boundary layers developing in a heated vertical annular pipe at supercritical pressure.  Phys. Fluids, 20, pp. 055108-1 to - 20 .  Available online as doi:10.1063/1.2927488.
  • McEligot, D. M., E. J. Walsh, E. Laurien and P. R. Spalart, 2008.    Entropy generation in the viscous parts of a turbulent boundary layer.  J. Fluids Engr., 130, pp. 061205-1 to -12.
  • McEligot, D. M., K. P. Nolan, E. J. Walsh and E. Laurien, 2008.  Effect of pressure gradients on entropy generation in the viscous layers of turbulent wall flows.  Int. J. Heat Mass Transfer, 51, pp. 1104-1114.
  • Lee, J. I., P. Hejzlar, P. Saha, M. S. Kazimi and D. M. McEligot, 2008.  Deteriorated turbulent heat transfer (DTHT) of gas up-flow in a circular tube:  Experimental data.  Int. J. Heat Mass Transfer, 51, pp. 3259-3266. 
  • Lee, J. I., P. Hejzlar, P. Saha, M. S. Kazimi and D. M. McEligot, 2008.  Deteriorated turbulent heat transfer of gas up-flow in a circular tube:  Heat transfer correlations.  Int. J. Heat Mass Transfer, 51, pp. 5318-5326. 
  • Hernon, D., E. J. Walsh and D. M. McEligot, 2007.  Experimental investigation into the route to bypass transition and the shear sheltering phenomenon.  J. Fluid Mech., 591, pp. 461-479.
  • Walsh, E. J., K. P. Nolan, D. M. McEligot, R. J. Volino and A. Bejan, 2007.  Conditionally-sampled turbulent and non-turbulent measurements of entropy generation rate in the transition region of boundary layers.  J. Fluids Eng., 129, pp. 659-664.
  • Bae, J. H., J. Y. Yoo, H. Choi and D. M. McEligot, 2006.  Effects of large density variation in strongly-heated internal air flows.  Phys. Fluids, 18, pp. 075102-1 to -25.
  • McEligot, D. M., and H. Eckelmann, 2006.  Laterally converging duct flows:  Part 3. Mean turbulence structure in the viscous layer.  J. Fluid Mech., 549, pp. 25-59.
  • McEligot, D. M., and J. D. Jackson, 2004.  "Deterioration" criteria for convective heat transfer in gas flow through non-circular ducts.  Nuc. Engr. Design, 232, pp. 327-333.
  • Xu, X., J. S. Lee, R. H. Pletcher, A. M. Shehata and D. M. McEligot, 2004.  Large eddy simulation of turbulent forced gas flows in vertical pipes with high heat transfer rates.  Int. J. Heat Mass Transfer, 47, pp. 4113-4123.
  • Mikielewicz, D. P., A. M. Shehata, J. D. Jackson and D. M. McEligot, 2002.  Temperature, velocity and mean turbulence structure in strongly-heated internal gas flows.  Comparison of numerical predictions with data.  Int. J. Heat Mass Transfer,  45, pp. 4333-4352. 
  • Becker, S., C. M. Stoots, K. G. Condie, F. Durst and D. M. McEligot, 2002.  LDA-measurements of transitional flows induced by a square rib.  J. Fluids Engr., 124, pp. 108-117.
  • McCreery, G. E., K. G. Condie, R. L. Clarksean and D. M. McEligot, 2002.  Convective processes in spent nuclear fuel canisters.  Heat Transfer 2002  (Twelfth International Heat Transfer Conference, Grenoble, August),  Vol. 4, pp. 663-668.
  • Satake, S.-i., T. Kunugi, A. M. Shehata and D. M. McEligot, 2000.  Direct numerical simulation of laminarization of turbulent forced gas flows in circular tubes with strong heating.  Int. J. Heat Fluid Flow, 21, pp. 526-534.
  • Nishimura, M., S. Fujii, A. M. Shehata, T. Kunugi and D. M. McEligot, 2000.  Prediction of forced gas flows in circular tubes at high heat fluxes.  J. Nuc. Sci. Tech. (Atomic Energy Society of Japan), 37, pp. 581-594.
  • Ezato, K., A. M. Shehata, T. Kunugi and D. M. McEligot, 1999.  Numerical predictions of transitional features of turbulent gas flows in circular tubes with strong heating.   J. Heat Transfer,  121, pp. 546-555.
  • Shehata, A. M., and D. M. McEligot, 1998.  Mean turbulence structure in the viscous layer of strongly-heated internal gas flows.  Measurements.   Int. J. Heat Mass Transfer, 41, pp. 4297-4313.
  • McEligot, D. M., J. E. O'Brien, C. M. Stoots, T. K. Larson, W. A. Christenson, D. C. Mecham and W. G. Lussie, 1994.  Natural convection between a vertical cylinder and a surrounding array.  Nuc. Engr. Design, 146, pp. 267-276.
  • Kim, Y.-S., D. M. McEligot and T. W. Eagar, 1991.  Approximate analyses of electrode heat transfer in Gas Metal Arc Welding.  Welding Journal, 70, pp. 20s-31s.
  • Taylor, M. F.,  K. E. Bauer and D. M. McEligot,  1988.  Internal convective heat transfer to gas mixtures.  Int. J. Heat Mass Transfer, 31, pp. 13-25.
  • McEligot, D. M., 1985.  Measurement of wall shear stress in favorable pressure gradients. Lec. Notes Physics, 235, pp. 292-303.
  • Berner, C., F. Durst and D. M. McEligot,  1984.  Flow around baffles.  J. Heat Transfer, 106, pp. 743-749.
  • Murphy, H. D.,  F. W. Chambers and D. M. McEligot, 1983.  Laterally converging flow.  I:  Mean flow.   J. Fluid Mech., 127, pp. 379-401.
  • Chambers, F. W., H. D. Murphy and D. M. McEligot, 1983.  Laterally converging flow.  II:  Temporal wall shear stress.  J. Fluid Mech., 127, pp. 403-428.
  • Park, J. S., M. F. Taylor and D. M. McEligot, 1982.  Heat transfer to pulsating turbulent gas flow.  Heat Transfer 1982 (7th Intl. Heat Transfer Conf., München), Vol. 3, pp. 105-110.
  • Pickett, P. E., M. F. Taylor and D. M. McEligot, 1979.  Heated turbulent flow of helium-argon mixtures in tubes.  Int. J. Heat Mass Transfer, 22, pp. 705-719.
  • Serksnis, A. W., M. F. Taylor and D. M. McEligot, 1978.  Turbulent flow of hydrogen-carbon dioxide mixtures in heated tubes.  Heat Transfer 1978 (Sixth Int. Heat Transfer Conf., Toronto), Vol. 2, pp. 163-168.
  • McEligot, D. M., M. F. Taylor and F. Durst, 1977.  Internal forced convection to mixtures of inert gases.  Int. J. Heat Mass Transfer, 20, pp. 475-486.
  • Perkins, K. R., and D. M. McEligot, 1975.  Mean temperature profiles in heated laminarizing air flows.  J. Heat Transfer, 97, pp. 589-593.
  • Bates, J. A., R. A. Schmall, G. A. Hasen and D. M. McEligot, 1974.  Effects of buoyant body forces on forced convection in heated laminarizing flows.  Heat Transfer 1974 (Fifth Int. Heat Transfer Conf., Tokyo), Vol. II, pp. 141-145.
  • Bradshaw, P.,  R. B. Dean and D. M. McEligot, 1973.  Calculations of interacting turbulent shear layers:  Duct flow.  J. Fluids Eng., 95, pp. 214-220.
  • Perkins, K. R., K. W. Schade and D. M. McEligot, 1973.  Heated laminarizing gas flow in a square duct.  Int. J. Heat Mass Transfer, 16, pp. 897-916.
  • Schade, K. W., and D. M. McEligot, 1971.  Cartesian Graetz problems with air property variation.  Int. J. Heat Mass Transfer, 14, pp. 653-666.
  • White, W. D., and D. M. McEligot, 1970.  Transition of dilute aqueous polymer mixtures in small tubes.  J. Basic Eng., 92, pp. 411-418.
  • Bankston, C. A., and D. M. McEligot, 1970.  Turbulent and laminar heat transfer to gases with varying properties in the entry region of circular ducts.  Int. J. Heat Mass Transfer, 13, pp. 319-344.
  • McEligot, D. M., C. W. Coon and H. C. Perkins, 1970.  Relaminarization in tubes.  Int. J. Heat Mass Transfer, 13, pp. 431-433.
  • White, W. D., and D. M. McEligot, 1970.  Transition of dilute aqueous polymer mixtures in small tubes.  J. Basic Eng., 92, pp. 411-418.
  • Bankston, C. A., and D. M. McEligot, 1969.  Prediction of tube temperatures with axial variation of heating rate and gas property variation.  Nuc. Sci. Eng., 37, pp. 157-162.
  • McEligot, D. M., L. W. Ormand and H. C. Perkins, 1966.  Internal low Reynolds number turbulent and transitional gas flow with heat transfer.  J. Heat Transfer, 88, pp. 239-245.
  • McEligot, D. M., P. M. Magee and G. Leppert, 1965.  Effect of large temperature gradients on convective heat transfer:  The downstream region.  J. Heat Transfer, 87, pp. 67-76.

Locations

U of I College of Engineering

Mailing Address:

Janssen Engineering (JEB) Room 125
111 Perimeter Drive MS 1011
Moscow, ID 11111-1011

Phone: 111-111-6470

Fax: 111-111-6645

Email: [email protected]

Web: College of Engineering

U of I Boise Engineering

Mailing Address:

Idaho Water Center 
322 E. Front Street 
Boise, ID 83702

Phone: 111-364-6123

Fax: 111-364-3160

Email: [email protected]

Web: Boise Engineering

U of I Idaho Falls Engineering

Physical Address:

1776 Science Center Drive, Suite 306
Idaho Falls, Idaho 83402

Phone: 111-757-5400

Fax: 111-282-7929

Email: [email protected]

Web: Idaho Falls Engineering

U of I CDA Computer Science

Physical Address:
1031 N. Academic Way, Suite 242
Coeur d'Alene, ID 83814

Phone: 111-292-2509

Email: [email protected]

Web: U of I Coeur d'Alene

Engineering Outreach

Physical Address:

Engineering Physics (EP) Building, Room 312
111 Perimeter Drive MS 1014
Moscow, ID 11111-1014

Phone: 111-111-6373

Fax: 111-111-9249

Email: [email protected]

Web:

www.chemtest.com.ua/

best-cooler.reviews/best-cooler-bag-portable-reviews/